Features

The differential pressure transmitter WIN10 is suitable to measure liquid, gas, or steam flow as well as liquid level, density and pressure. WIN10-B/C outputs a 4 to 20 mA DC HART signal corresponding to the measured differential pressure. Other key features include quick response, remote set-up using communications, self-diagnostics and optional status output for pressure high/low alarm.

Specifications

1 PERFORMANCE SPECIFICATIONS

Reference Accuracy of Calibrated Span (includes terminal-based linearity, hysteresis, and repeatability)

If TD>10 (TD=URL/SPAN):

±(0.0075×TD)%

± 0.075%

The square root accuracy is 1.5 times of reference accuracy of calibrated span.

Ambient Temperature Effects

Span Code	-20°C∼65°C	
А	±(0.45×TD+0.25)%×Span	
В	±(0.30×TD+0.20)%×Span	
C/D/E	±(0.20×TD+0.10)%×Span	
Span Code	-40°C~-20°C & 65°C~85°C	
A	±(0.45×TD+0.25)%×Span	
В	±(0.30×TD+0.20)%×Span	
C/D/E	±(0.20×TD+0.10)%×Span	

Static Pressure Effects

Span Code	Static Pressure Effects	
A	±(0.15%URL+0.10%Span)/4MPa	
В	±(0.10%URL+0.075%Span)/16MPa	
C/D/E	±(0.05%URL+0.05%Span)/16MPa	

Overpressure Effects

Span Code	Overpressure Effects
A	±0.2%×Span/4MPa
В	±0.2%×Span/16MPa
C/D/E	±0.1%×Span/16MPa

Stability

Span Code	Stability	
A	±0.5%×Span/1year	
В	±0.2%×Span/1 year	
C/D/E	±0.1%×Span/1 year	

Power Supply Effects

±0.001% /10V (12~42V DC)

2 FUNCTIONAL SPECIFICATIONS Span and Range Limits

Span/ Range Limits		kPa	mbar
^	Span	0.1~1	1~10
А	Range Limits	-1~1	-10~10
Б	Span	0.2~6	2~60
в	Range Limits	-6~6	-60~60
6	Span	0.4~40	4~400
C	Range Limits	-40~40	-400~400
	Span	2.5~250	25~2500
U	Range Limits	-250~250	-2500~2500
Е	Span	20~2000	0.2~20 bar
	Range Limits	-500~2000	-5 \sim 20bar

Zero Adjustment Limits

Zero can be fully elevated or suppressed, within the lower and upper range limits of the capsule.

External Zero Adjustment

External zero is continuously adjustable with 0.01% incremental resolution of span. Re-range can be done locally using the range setting switch.

Mounting Position Effects

Rotation in diaphragm plane has no effect. Tilting up to 90 degree will cause zero shift up to 0.4 kPa which can be corrected by the zero adjustment.

Output

Two wire 4 to 20 mA DC output with digital communications, linear or square root programmable. HART FSK Protocol is option superimposed on the 4 to 20 mA signal. Output range: 3.9 mA to 20.5 mA.

Failure Alarm (the mode can be selected)

Low Mode (min): 3.7 mA

High Mode (max): 21 mA

No Mode (hold): Keep the effective value before the fault. Note: The standard setting of failure alarm is High Mode.

Response Time

The amplifier damping constant is 0.1 sec; The sensor damping constant is 0.1~1.6 sec, it depends on the range and range compression ratio. Amplifier damping time constant is adjustable from 0 to 60 sec by software and added to response time.

UpTime

< 15s

Ambient Temperature Limits

-40 to 85°C

-20 to 65°C with LCD display or fluorine rubber sealing

Storage and Transportation Temperature Limits -50 to 85°C; -40 to 85°C with LCD display

Working Pressure Limits (Silicone oil)

Maximum working pressure: 16MPa,25MPa,40MPa

Static Pressure Limits

3.5kPa abs. to maximum working pressure.

One-way Overload Pressure Limit

The maximum one-way overload pressure is maximum working pressure.

Electromagnetic Compatibility (EMC)

Look the EMC Performance Table

3 INSTALL

Supply & Load Requirements

24 V DC supply, R≤ (US-12V) / max kΩ, Imax=23 mA. Maximum voltage limited: 42VDC, Minimum voltage limited: 12VDC, 15VDC (with LCD display) 230Ω to 600 Ω for digital communication

Electrical Connection

The electrical connection is made via cable entry M20x1.5.The screw terminals are suitable for wire cross-sections up to 2.5mm².

Process Connection

Flange with fixing thread 7/16-20 UNF and 1/4-18 NPT female thread on both sides.

4 PHYSICAL SPECIFICATIONS

Wetted Parts Materials

Sensor Body:	316L stainless steel
Isolating Diaphragm :	316L stainless steel/Hastelloy C
Nuts and Bolts :	304 stainless steel
Process Connector:	304 stainless steel
Fill fluid	Silicone oil/Fluorinated oil
Process Connector Ga	asket: Perbunan (NBR) /Viton
	(FKM) /Teflon(PTFE)
Amplifier Housing	Aluminum with epoxy resin coat
Housing Gasket:	Perbunan (NBR)
Name plate and tag :	304 stainless steel
Weight	3.3kg
Degrees of Protection	: IP67

WIN10 Differential Pressure Transmitter

EMC Performance Table

Items	Test items	Basic standards	Test conditions	Performance Level
1	Radiated interference (Housing)	GB/T 9254-2008	30MHz ~ 1000MHz	ОК
2	Conducted interference(DC power port)	GB/T 9254-2008	$0.15 MHz \sim 30 MHz$	ОК
3	Electrostatic Discharge (ESD) Immunity	GB/T 17626.2-2006	4kV(Line) 8kV(Air)	В
4	RF electromagnetic field immunity	GB/T 17626.3-2006	10V/m (80MHz ~ 1GHz)	А
5	Frequency magnetic field immunity	GB/T 17626.8-2006	30A/m	А
6	Electrical Fast Transient Burst Immunity	GB/T 17626.4-2008	2kV(5/50ns,5kHz)	В
7	Surge Immunity	GB/T 17626.5-2008	1kV(line to line) 2kV(line to ground) (1.2us/50us)	В
8	Conducted interference immunity induced by RF field	GB/T 17626.6-2008	3V (150KHz ~ 80MHz)	А

Note: (1) Performance level A description: The technical specifications within the limits of normal performance.

(2) Performance level B description: Temporary reduction or loss of functionality or performance, it can restore itself. The actual operating conditions, storage, and data will not be changed.

DIMENSIONS (Unit : mm)

Horizontal Impulse Piping Type side face

Horizontal Impulse Wall mounting Type

Vertical Impulse Piping Type

5 Terminal Configuration

Note: Quick interface functionally equivalent to the signal terminal

6 Process connections Description

		WIN1001 Series Ordering Code
	Code	Technology specs
1.	WIN10	Series
		Pressure type
2.	01	Differential pressure
ł		Pressure range
3.		Specify the SPAN
ł		Static pressure
4.	S	Standard
	Н	Max. static pressure 42 MPa
		Max. working pressure
5.	1	16 MPa
	2	25 MPa
	3	42 MPa
		Accuracy
6.	2	0.1%URL
	5	0.075%URL
	7	0.05%URL
		Output singal
7.	1	420mA + HART
	2	Modbus
	3	Profibus
	0	Display
8.		
	E	With OLED display (Min, -40 C)
	C	Explosion proof
9	S	Standard non-explosion IP66
	x	Exd IIC T6 Gb IP67
		Exia IIC T4 Ga. IP66
		Filling oil
10.	B1	Standard (-40/120℃) option with seal -40/205℃
	B2	Inert oil (-40/120 C) with seal -40/160 C, Oxyen necessary
		Process connection
11.	2N	1/2"NPT Female(standard)
	3N	1/2"NPT Female,with elliptic SS flange
	2M	M20*1.5 Male,SS T-joint
		Diaphragm material
12.	SS	316L SS (standard)
	HC	Hastelloy C
	TA	Tantalum
	GL	316L SS coating gold
	FP	316L SS coating FEP
		O-ring
13.	N	NBR
	M	FKM
	P	PIFE
		Mounting bracket
14.	0	None
	1	
	2	Galvanized cardon steel

			WIN1001 Series Ordering Code
		Code	Technology specs
			Relief valve
15.		0	None
		1	On rear side of flange
		2	On upper side of flange
		3	On lower side of flange
			Option
16.		00	None
		PR	Square roots output
	OX		Oxygen clean (with inert oil)
	LG		Lightning protection
		VV	Low voltage
	NP		1/2"NPT electrical connection
		TG	SS tag plate
		LM	Vertical mounting flange

WIN1002 - Gauge Pressure Transmitter WIN1003 - Absolute Pressure Transmitter

Features

The pressure transmitter WIN1002/3 is suitable to measure liquid, gas, or steam flow as well as liquid level, density and pressure. WIN1002/3 outputs a 4 to 20 mA DC signal corresponding to the measured pressure. The key features include quick response, remote set-up using communications, self-diagnostics and optional status output for pressure high/low alarm.

Specifications

1 PERFORMANCE SPECIFICATIONS

Reference Accuracy of Calibrated Span (includes terminal-based linearity, hysteresis, and repeatability) ± 0.075%; If TD>10 (TD=URL/SPAN): ±(0.0075×TD)%;

Ambient Temperature Effects

Span Code	-20°C∼65°C	
B/L	±(0.30×TD+0.20)%×Span	
Others	±(0.20×TD+0.10)%×Span	
Span Code	-40°C~-20°C和 65°C~85°C	
B/L	±(0.30×TD+0.20)%×Span	
Others	±(0.20×TD+0.10)%×Span	

Overpressure Effects

±0.075%×Span

Stability

Span Code	Stability	
B/L	±0.2%×Span/1year	
Others	±0.1%×Span/1year	

Power Supply Effects:

 $\pm 0.001\%$ /10V (12 \sim 42V DC)

2 FUNCTIONAL SPECIFICATIONS

Span and Range Limits (WIN1002)

Span/Range Limits		kPa	bar
Б	Span	0.6~6	6 \sim 60mbar
в	Range Limits	-6~6	-60 \sim 60mbar
C	Span	2~40	0.02~0.4
C	Range Limits	-40~40	-0.4~0.4
	Span	2.5~250	0.025~2.5
D	Range Limits	-100~250	-1~2.5
г	Span	30~3000	0.3~30
Г	Range Limits	-100~3000	-1~30
<u> </u>	Span	0.1~10MPa	1~100
G	Range Limits	-0.1~10MPa	-1~100
ш	Span	0.21∼21 MPa	2.1~210
п	Range Limits	-0.1~21 MPa	-1~210
I	Span	0.4∼40 MPa	4~400
	Range Limits	-0.1∼40 MPa	-1~400
J	Span	0.6∼60 MPa	6~600
	Range Limits	-0.1~60 MPa	-1~600

Span and Range Limits (WIN1003)

_	-		
Spa	an/Range Limits	kPa	bar
	Span	2~40	0.02~0.4
L	Range Limits	0~40	0~0.4
M	Span	2.5~250	0.025~2.5
IVI	Range Limits	0~250	0~2.5
0	Span	30~3000	0.3~30
0	Range Limits	0~3000	0~30

External Zero Adjustment

External zero is continuously adjustable with 0.01% incremental resolution of span. Re-range can be done locally using the range setting switch.

Mounting Position Effects

Rotation in diaphragm plane has no effect. Tilting up to 90 degree will cause zero shift up to 0.25 kPa which can be corrected by the zero adjustment.

Output

Two wire 4 to 20 mA DC output with digital communications, linear or square root programmable. HART FSK Protocol is option superimposed on the 4 to 20 mA signal. Output range: 3.9 mA to 20.5 mA.

Failure Alarm (the mode can be selected)

Low Mode (min): 3.7 mA, High Mode (max): 21 mA No Mode (hold): Keep the effective value before fault. The standard setting of failure alarm is High Mode.

Response Time

The amplifier damping constant is 0.1 sec; The sensor damping constant is 0.1~1.6 sec, it depends on the range and range compression ratio. Amplifier damping time constant is adjustable from 0 to 60 sec by software and added to response time.

Up) Ti	me	
----	------	----	--

< 15s

Ambient Temperature Limits: -40 to 85°C -20 to 65°C with LCD display or fluorine rubber sealing

Storage and Transportation Temperature Limits -50 to 85°C, -40 to 85°C with LCD display

Working Pressure Limits (Silicone oil) From vacuum to upper range limits

Overload Pressure Limits

Snon	6kPa	40kPa	250kPa	3MPa
Span	(B)	(C)	(D/M)	(F/O)
OPL	0.2MPa	1MPa	4MPa	16MPa
Span	10MPa	21MPa	40MPa	60MPa
	(G)	(H)	(I)	(J)
OPL	20MPa	50MPa	50MPa	70MPa

Electromagnetic Compatibility (EMC)

Look the EMC Performance Table

3 INSTALL

Supply & Load Requirements

24 V DC supply, R≤ (US-12V) / max k Ω , Imax=23 mA. Maximum voltage limited: 42VDC, Minimum voltage limited: 12VDC, 15VDC (with LCD display) 230 Ω to 600 Ω for digital communication

Electrical Connection

The electrical connection is made via cable entry M20x1.5.The screw terminals are suitable for wire cross-sections up to 2.5mm².

Process Connection

Default Process Connection: 1/2-NPT female thread, it can be changed to 1/2-NPT,G1/2,M20x1.5male thread and KF16 vacuum Connection.

4 PHYSICAL SPECIFICATIONS

Isolating Diaphragm :	316L stainless steel/Hastelloy C
Process Connector:	316 stainless steel
Fill fluid	Silicone oil
Amplifier Housing	Aluminum with epoxy resin coat
Housing Gasket:	Perbunan (NBR)
Name plate and tag :	304 stainless steel
Weight	1.6kg
Degrees of Protection	: IP67

EMC Performance Table

Items	Test items	Basic standards	Test conditions	Performance Level
1	Radiated interference (Housing)	GB/T 9254-2008	$30MHz \sim 1000MHz$	ОК
2	Conducted interference(DC power port)	GB/T 9254-2008	0.15MHz ~ 30MHz	ОК
3	Electrostatic Discharge (ESD) Immunity	GB/T 17626.2-2006	4kV(Line) 8kV(Air)	В
4	RF electromagnetic field immunity	GB/T 17626.3-2006	10V/m (80MHz ~ 1GHz)	А
5	Frequency magnetic field immunity	GB/T 17626.8-2006	30A/m	А
6	Electrical Fast Transient Burst Immunity	GB/T 17626.4-2008	2kV(5/50ns,5kHz)	В
7	Surge Immunity	GB/T 17626.5-2008	1kV(line to line) 2kV(line to ground) (1.2us/50us)	В
8	Conducted interference immunity induced by RF field	GB/T 17626.6-2008	3V (150KHz ~ 80MHz)	A

Note: (1) Performance level A description: The technical specifications within the limits of normal performance.

(2) Performance level B description: Temporary reduction or loss of functionality or performance, it can restore itself. The actual operating conditions, storage, and data will not be changed.

DIMENSIONS (Unit : mm)

Horizontal Impulse Piping Type side face

Horizontal Impulse Piping Type front side

WIN10 Gauge/Absolute Pressure Transmitter

Horizontal Impulse Wall mounting Type

5 Terminal Configuration

Note: Quick interface functionally equivalent to the signal terminal

6 Process connections Description

6.1 Default Process Connection Code 1 M/D/F/G/H/I/J/O Span

B/C/L Span

6.2 Other forms of Process connector 1/2-NPT male thread Code 2

M20x1.5 male thread Code3

G 1/2 male thread Code 4

Vacuum Connection DIN 28403 KF16 / ISO 2861 Code 5

		WIN1002/03 Series Ordering Code
	Code	Technology specs
1.	WIN10	Series
		Pressure type
2.	02	Gauge Pressure Transmitter
	03	Absolute Pressure Transmitter
		Pressure range
3.		Specify the SPAN
		Accuracy
4.	2	0.1%URL
	5	0.075%URL
	7	0.05%URL
		Output singal
5.	1	420mA + HART
	2	Modbus
	3	Profibus
		Display
6.	0	Without
	E	With OLED display (Min, -40 C)
	С	With LCD display (Min, -20 C)
		Explosion proof
7.	S	Standard, non-explosion, IP66
	X	Exd IIC T6 Gb, IP67
	<u> </u>	Exia IIC T4 Ga, IP66
		Filling oil
8.	B1	Standard (-40/120°C) option with seal -40/205°C
	B2	Inert oil (-40/120 C) with seal -40/160 C, Oxyen necessary
		Process connection
9.	2N	1/2"NPT Female(standard)
	3N	1/2"NPT Male
	2M	M20*1.5 Male
	4N	1/4"NPT Female
	2G	G1/2" Male
	1K	KF16 Vacuum connector
	CT	with nigh-temperature heat dissipation, tprocess interface1/2 "NPT female
	1G	
	M4	M44"1.25 I Treaded pulp joint
10		216L SS (standard)
10.		
	GL	Mounting bracket
11	0	None
1.1 1		SS
11.	L I	Galvanized carbon steel
	2	
	2	Relief valve
12	2	Relief valve
12.		Relief valve None On rear side of flange
12.		Relief valve None On rear side of flange On upper side of flange

Option 13. 00 None 13. 01 PR Square roots output 02. Oxygen deal (with linet 0) 0.00000000000000000000000000000000000	WIN1002/03 Series Ordering Code			
13. 00 None 14. 0X. Oxygen clean (with linet toll) 15. 12. Uptiming protection 16. UV Low voltage 17. 17.2/MPT electrical connection 1 18. 17.2/MPT electrical connection 1 19. 17.2/MPT electrical connec		Code	Technology specs	
13. Option PR <square cools="" output<="" td=""> OX Oxygen class (with inset all) LG Lightning protection VV Low valage NP 1/2"NPT electrical connection TG SS tag plate</square>				
I3. O0 Nome PR Square roots output			Option	
PR Square roots output OX Oxygen clean (with inset dit) LG Lighting protection VV Low voltage NP 1/2 NPT electrical connection TG SS tag plate	13.	00	None	
OX Oxygen clean (with inert oil) UG Lightning protection NP 1/27NPT electrical connection TG SS tag plate		PR	Sauare roots output	
LG Lightning protection VV Low voltage NP 1072NPT electrical connection TG SS tag plate		ox	Oxygen clean (with inert oil)	
V Low voltage NP 1/2/NPT electrical connection TG SS tag plate		LG	Lightning protection	
NP 1/2NPT electrical connection TG SS tag plate		VV	Low voltage	
TG SS tag plate		NP	1/2"NPT electrical connection	
		TG	SS tag plate	